
Neutrinos and Astrophysics

• Astrophysical neutrinos

• Solar and stellar neutrinos

• Supernovae

• High energy neutrinos

• Cosmology

– Leptogenesis
– Big bang nucleosynthesis
– Large-scale structure and CMB
– Relic neutrinos
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Astrophysical Neutrinos

• Simultaneous probes of ν and astrophysics

• Big Bang neutrinos

– 300 ν’s/cm3 left over from big bang

– Leptogenesis?

– Big bang nucleosynthesis (to 7Li)

– Important for dark matter?

– Detection?
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• Solar/stellar neutrinos

– Nuclear reactions in core, nucleosynthesis (to Fe)

– Depletion and spectral distortion ⇒neutrino mass/oscillations

– Astrophysics vs neutrino properties

– Bounds on magnetic moments/non-standard properties

• Supernova neutrinos (SN1987A)

– Core collapse into neutron star

– νe pulse from e−p → νen

– Fireball of ν + ν̄ boils off for ∼ 10 sec

– ν’s may revive shock, affect r-process (nucleosynthesis above
Fe), pulsar kicks? (Too light?)

– Oscillation/conversion constraints and supernova probes
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• Atmospheric neutrinos

– Cosmic rays in atmosphere
produce π’s

– π+ → µ+νµ, µ+ → e+νeν̄µ

– Expect µ/e ∼ 2, observe ∼ 1.2
– Zenith angle: disappearance

(oscillation)

• High energy neutrinos

– Active galactic nuclei, gamma
ray bursts, supernova shocks?

– Z bursts (detection of relic;
cosmic rays above GZK)?
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Solar and stellar neutrinos

• Produced during stellar nucleosynthesis

• Energy loss constraints (globular clusters, horizontal branch, · · ·)

• Core collapse supernovae
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• Solar neutrinos + Kamland
confirmed SSM (also
helioseismology)

• Established LMA

• Excluded sterile, RSPF, new
interactions as dominant
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• Future pp experiment

– Stellar evolution theory at 1%

– Ue3 probe

– MSW/vacuum transition

– Constrain sterile, axions, · · ·
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• Stellar energy loss severely constrains anomalous energy loss, e.g.
heavy Dirac, anomalous electromagnetic moments, decays

• Simplest models: µν = 3.2×10−19µB(mν/eV )
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• Magnetic or Electric Moments

– Motivated by alternative RSFP Solar ν solution

– Transition (Majorana); transition or direct (Dirac)

– He ignition in globular cluster red giants (plasmon decay):
µν

<∼ 3×10−12µB (all types)

– Supernova cooling: µν(Dirac) <∼ 3×10−12µB

– Radiative decays

• Neutrino Decays

– Radiative, ν2→ν1γ: diffuse background from relic ν’s; SN1987A

radiation

– Invisible decays (e.g., into Majorons): matter fraction and
growth of structure

– Was mainly relevant for heavier neutrinos, now excluded by
oscillations
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Supernovae

• Collapse of iron core of M >∼ 8M� star

• 99% of energy (>∼ 3×1053 ergs) radiated in neutrinos
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• Neutronization pulse: e−p→νen
(ms)

• Bounce and expanding shock.
Stalls in simulations.

• Neutrinosphere radiates νi + ν̄i

for ∼ 10 s

• ν̄e observed for SN1987A
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• Neutrinos probe supernova dynamics

– Basic picture verified by 1987A

– Expect thousands of events for galactic SN (30-100 yr)

∗ Keep detectors running for 50 yr!

∗ SNEWS: The SuperNova Early Warning System

∗ Sensitive to obscured or failed supernovae!

– Experiments becoming sensitive to diffuse SN ν’s from other
galaxies
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• Probe of neutrino properties

– mν̄e
<∼ 20 eV from 1987A

– mi
<∼ 10’s eV (future), but now irrelevant

– SN1987A energetics may disfavor inverted if Ue3 6= 0 (hardened
ν̄e spectrum)

– Limits on energy loss, e.g. for LED, Z′→NRN̄R, large Dirac
masses, millicharge, µν(Dirac)

– New interactions (e.g. Majoron models)

– Future (including Earth effect): sensitive to oscillation patterns
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• Neutrinos may affect supernova
dynamics

– Massive neutrinos could revive
stalled shock, but not for
standard 3 ν scheme

– r-process not prevented by
νµ ↔ νe and νen→e−p for
standard 3ν

– Heavy sterile conversion could
help r-process by removing
active ν’s to prevent νen→e−p

– Pulsar kick mechanism for 1-20
KeV sterile
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High energy neutrinos

• Probe of ultra high energy sources
(GRB, AGN, BH, SN)

• Probe of ultra high energy νN
interactions (e.g., anomalous in
LED)

• Probe of neutrino properties
(oscillations into ντ), mass
hierarchy, decays, moments

• Earth tomography?
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IceCube Antares
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• The Z burst scenario:
possible probe of relic
ν for mν

<∼ eV:
ν(UHE)ν̄(relic)→Z→
hadrons

– Depends on (unknown)
large flux of ultra HE ν’s
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• Cosmic ray events with
Ep > GZK cutoff?
(or energy calibration?)
(Best fit mν = 0.26+0.20

−0.14 eV ,

Fodor, Katz, Ringwald)

• Future: Auger project
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Cosmology

• Leptogenesis

• Big bang nucleosynthesis

• Large-scale structure and
CMB

• Relic neutrinos
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Leptogenesis

• Baryon asymmetry nB/nγ ∼ 6 × 10−10

• Basic ideas worked out by Sakharov in 1967, but no concrete model

1. Baryon number violation

2. CP violation: to distinguish baryons
from antibaryons

3. Nonequilibrium of B-violating processes
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• Possible mechanisms

– GUT baryogenesis (wiped out by
sphalerons for B − L=0)

– Electroweak baryogenesis (easier
with U(1)′)

– Leptogenesis (heavy Majorana N
decays) (involves new CP phases)

• Out of equilibrium decays created lepton asymmetry
Nheavy→l + Higgs 6= Nheavy→l̄ + Higgs

• Electroweak tunneling (actually thermal fluctucation) then converts
some of the lepton asymmetry into a baryon asymmetry!

• Difficulties in supersymmetric version: gravitino problem
suggests reheating temperature too low (unless Nheavy produced

nonthermally)
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Big bang nucleosynthesis

• Production of light nuclei (4He, D, 3He, 7Li) in early Universe

• Parameters

– η = nB/nγ (η10 ∼ 274 Ωbh
2)

– ∆Nν (any new source of energy density, relative to one active
ν flavor)

– ξe = µνe/T , related to (nνe − nν̄e)/nγ

• SBBN: ∆Nν = ξe = 0
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• νen ↔ e−p and e+n ↔ ν̄ep keep nn/np in equilibrium as long as
it is rapid enough

– Freezeout at T? ∼ 1 MeV, when Γweak ∼ H

– Γweak = cG2
F T 5

– H =
[8π

3 GNρ
]1/2 ∼ 1.66g1/2

? T 2/MP l

– g? = gB + 7
8gF , with gF = 10 + 2∆Nν

– T? ∼
(

g
1/2
?

G2
F MP l

)1/3

– nn
np

= e−(mn−mp+µνe)/T?→4He

– 4He mass fraction: Yp =
4n4He

nH
depends strongly on ∆Nν

(∆Yp ∼ 0.013∆Nν) and ξe, weakly on η

– Y2 = D
H

depends on η (baryometer)

– Independent determination of η from CMB
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• Central 4He somewhat low

• Best fit for ∆Nν < 0, but
consistent with zero

• Most new physics yields
∆Nν > 0 ⇒ strongly
constrained

• Z′→νR ν̄R; sterile neutrinos
(LSND); ξµ,τ

• Can compensate by ξe ∼ 0.1;
naively expect ∼ 10−10
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Large-scale structure (LSS) and CMB

• Hot Dark Matter (HDM)

– Ωνh2 =
∑

l mνi
/92.5 eV

– HDM excluded by free-streaming: not enough time for large
structures to fragment

– Mixed CHDM models, typically Ωmatter ∼ 1 and
∑

i mνi
∼ few

eV → motivated degenerate ν spectra

– Now excluded by (a) Ωmatter ∼ 0.3 (clusters, etc); (b) Ωtotal =
ΩDE+Ωmatter ∼ 1, DE = dark energy (1st CMB peak, WMAP);
(c) ΩDE 6= 0 (Type Ia supernovae)
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• Small admixture of HDM still possible

– LSS (2dF, SDSS) sensitive to Σν ≡
∑

i mνi

– CMB (WMAP) fixes other (degenerate) parameters

– Current: Σν
<∼ 0.75 − 1 eV ⇒ mνi

<∼ 0.3 eV
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• Current: Σν
<∼ 0.75 − 1 eV ⇒

mνi
<∼ 0.3 eV

• Future: sensitive to ∼ 0.1 eV,
weak lensing, LSS, CMB

• cf. tritium β decay: mν < 2.4
eV (future: KATRIN, ∼ 0.3 eV)

• cf. ββ0ν
<∼ few ×10−1 eV (future:

∼ 0.02 eV)

San Juan (June 5, 2004) Paul Langacker (Penn)



• CMB has some sensitivity
to ∆Nν (matter-radiation
transition)

• Warm dark matter (e.g. 10
keV decaying ν) may still be
viable

San Juan (June 5, 2004) Paul Langacker (Penn)



Relic neutrinos

• νi, ν̄i decoupled at TD ∼ few MeV, while still relativistic

• Subsequently, p′ redshifted to p = p′/η, where η ≡ R(t)/R(tD)

• Now have form of relativistic thermal distribution, with

Tν ≡ TD
η

=
( 4
11

)1/3
Tγ ∼ 1.9K, and meffi

≡ mi
η

� mi
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• For hierarchical pattern

m3 ∼ 0.05 eV, m2 ∼ 0.005 eV, m1 � m2

(〈v3〉 ∼ 10−2, 〈v2〉 ∼ 10−1)

• For degenerate pattern, m1 ∼ m2 ∼ m3
<∼ 0.23 eV (WMAP),

〈vi〉 ∼ 2×10−3
(

0.23 eV
mi

)
• Clustering?

vesc ∼ 10−4 (Sun), 2×10−3 (Galaxy), 3×10−3 (Large Cluster)

– Little effect on velocities except degenerate case

– Little clustering unless mi
>∼ 0.3 eV , and then on supercluster

scale
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• Indirect detection: effects of BBN, LSS

• Direct detection?

– Incoherent scattering? Impossible

– Coherent effects (forces, torques)?
Impossible

– Z-burst: only known plausible
mechanism, but only if flux of ultra
high energy ν
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Conclusions

APS April Meeting, Denver, 2 May 2004John Beacom, Theoretical Astrophysics Group, Fermilab

Neutrino Windows

Neutrino Facilities Assessment Committee, NAS (2002)
(From Neutrino Facilities Assessment Committee report (NAS 2002))
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